If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17x^2=19
We move all terms to the left:
17x^2-(19)=0
a = 17; b = 0; c = -19;
Δ = b2-4ac
Δ = 02-4·17·(-19)
Δ = 1292
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1292}=\sqrt{4*323}=\sqrt{4}*\sqrt{323}=2\sqrt{323}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{323}}{2*17}=\frac{0-2\sqrt{323}}{34} =-\frac{2\sqrt{323}}{34} =-\frac{\sqrt{323}}{17} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{323}}{2*17}=\frac{0+2\sqrt{323}}{34} =\frac{2\sqrt{323}}{34} =\frac{\sqrt{323}}{17} $
| n³+3n²+2n-336=0 | | 5x4=5 | | (x-2.1)*(x-9.0)*(x-8.9)=0 | | 6x+1=4-1 | | (x-2.1)(x-9.0)(x-8.9)=0 | | 1-2x+(13/4)x^2=0 | | 7x-124=2x-9 | | 8x-6=10x-25 | | 5=13x-9 | | 5x+14=-109 | | 8/t;=4= | | 2s-7=9s-2 | | 1/6x+3/5=1-3/10× | | 2x-7=9x-2-2x | | (x/6)-(2-x/4)=2 | | 2x^+4x=7x | | 12(y^2+7y)^2-8(y^2+7y)(2y-1)-15(2y-1)^2=0 | | 7.5+15x=119 | | 8u2=72 | | 5(x)+25=10 | | 2(3x+1)-7=13 | | 10-5y=2y+4 | | y=55 | | 3u-3(9u2)=3u- | | 2n-1=n/2 | | 5/2x-1=7/4x+2 | | -x-9=-1 | | x+4=2x-58 | | 3x+8=20-3× | | 2x+16=5x+4=4x+13 | | -2.5x^2+23.75x-47.5=0 | | 2x-2=8(2x+1)-6x |